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Abstract

The general situation (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in

grid models poses problems when comparing grid-based air-quality modeling results with observations. Typically, grid

models ignore or parameterize processes and features that are at their sub-grid scale. Also, observations may be obtained

in an area where significant spatial variability in the concentration fields exists. Consequently, model results and

observations cannot be expected to be equal. To address this issue, we suggest a framework that can provide for qualitative

judgments on model performance based on comparing observations to the grid predictions and its SGV distribution.

Further, we (a) explore some characteristics of SGV, (b) comment on the contributions to SGV and (c) examine the

implications to the modeling results at coarse grid resolution using examples from fine scale grid modeling of the

Community Multi-scale Air Quality (CMAQ) modeling system.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Comparison of meteorological and air-quality
grid model simulations with point measurements is
problematic. In statistical terms, this is considered a
‘‘change of support’’ problem in which inferences
are made about differences between point-based
measurements to model-predicted values that re-
present volume average concentration (Gelfand et
al., 2001). There is an extensive body of literature
that recognizes and discusses sources of modeling
e front matter r 2006 Elsevier Ltd. All rights reserved
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uncertainties and methods for evaluating them. For
example, Fine et al. (2003) review the issues
associated with evaluation of model uncertainties
(MU) in photochemical models. They explore the
range of sensitivity, diagnostic and other useful
studies used in performing uncertainty analyses.
MU, in general, consists of contributions from all
sources in varying degrees, to be both epistemic and
aleatory (i.e., due to deterministic or stochastic
causes, respectively) (Lohman et al., 2000). The
classes of epistemic MU are those inclusive of model
inputs such as emissions, meteorology, land-use,
initial and boundary conditions, and imperfections
in model formulations (parameterizations) of var-
ious physical and chemical processes (NRC, 1991;
Russell and Dennis, 2000). The aleatory classes of
.

www.elsevier.com/locate/atmosenv


ARTICLE IN PRESS
J. Ching et al. / Atmospheric Environment 40 (2006) 4935–49454936
MU are stochastic variability due to turbulence and
other random processes not simulated by determi-
nistic models.

In addition to the MU from both epistemic and
aleatory classes, there is an additional considera-
tion, which arises from the scale dependency of
models. A fundamental attribute of deterministi-
cally modeled air-pollutant concentrations is that
they are grid size-dependent (Odman and Russell,
1991; Jang et al., 1995). Thus, quantitative compar-
isons of modeled concentrations with observations
will change merely due to a different choice in the
size of the grid cell chosen for the simulation.
Further, attributes of inherent within-grid spatial
variability, also known as sub-grid variability
(SGV), which, by definition, is not simulated by
grid models, are dependent on the parent model grid
size. When SGV is significant, the comparison of
grid model outputs against one or more point
measurements cannot be expected to be encoura-
ging, except under very limited circumstances.
Moreover, any observation reflects an event out of
a population, while model predictions represent an
average of the population.
2. Concept and approach

One fundamental property and limitation of grid
models is their inability to resolve spatial features
smaller than twice the grid cell size used in the
simulation. However, for meteorology, each typical
model domain uses grid sizes ranging from one to
hundreds of kilometers and contains within-grid cell
(hereinafter, within-grid) areal variability due to
land-use, land-cover and terrain complexities at
much finer scales. (Problematic are the methodol-
ogy(s) devised to treat within-grid fractional land
use. In the case of complex terrain, one cannot well
extrapolate either the systematic biases due to the
meteorology model terrain smoothing methodology
or the effects of the sub-grid terrain variability
itself.) For typical regional-to-urban scale air
pollution modeling, in addition to sub-grid scale
modeling issues associated with fine scale land-use
and complex terrain features, the usual practice is to
amalgamate and disperse into each cell, all the
within-grid emission sources, thus producing inher-
ent, but generally unresolved SGV. This problem is
ameliorated, but never eliminated entirely, by
employing successively finer scale grid sizes (Odman
and Russell, 1991; Jang et al., 1995; Gego et al.,
2005), or by specific within-grid model treatments
for some of the major points sources, (e.g.,
Karamchandani et al., 2002). Recently, it has been
pointed out that significant spatial and temporal
variability can arise even from coupled chemical
and turbulent interactions (Herwehe, 2000). On the
other hand, siting guidance for locating monitors
cannot fully satisfy the representativeness criteria
requirement except for idealized horizontally homo-
geneous, fully dispersed, uniform source distribu-
tion situations. The circumstance in which the
monitors and grid model outputs are really expected
to be completely comparable is conceptually for-
tuitous, especially in urban areas, as illustrated
schematically in Fig. 1. In Fig. 1a for any given cell,
there is a cell mean, and some distribution
representing the concentration SGV. Fig. 1b is a
hypothetical but typical problem facing monitoring
deployment; in this situation, the monitor is located
far away and upwind of a busy polluted roadside.

An opportunity to explore these considerations is
provided as a result of modeling studies using the
US EPA CMAQ modeling system (Byun and
Ching, 1999) for simulating airborne toxics and
other air pollutants at neighborhood scales (Ching
et al., 2004a, b, c). Their implementation employed
nests of grids for model simulations run at increas-
ingly smaller grid sizes from 36 km, down to 1.3 (or
1) km. These results will serve to illustrate three
aspects of grid modeling relevant to model evalua-
tion considerations including: (a) grid resolution,
(b) characteristics of and contributions to SGV, and
(c) comparison between model simulations at a
given grid size from model’s run at the prescribed
grid size to aggregated results from finer grid sizes.
In (a), we show fine-scale features not apparent in
coarse grid simulations to become evident as grid
sizes become smaller. In (b), we investigate the
characteristic features of the SGV distributions of
concentration values and comment on their depen-
dence on the within-grid spatial distributions of
sources as well as on the nature and extent of
turbulence-induced chemistry processes. In (c), we
demonstrate that aggregation of model outputs
from fine-scale modeling differs, in general, from
the results of coarser, native grid simulations of
equivalent size. The areas with largest differences
are usually co-located with areas containing a
significant number of pollutant sources. We suggest
that these differences occur because the coarse grid
simulations inherently lack model treatments for
sources and processes acting at their sub-grid scales.
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Fig. 1. (a) Schematic indicating concentration variability within each grid cell. (b) Schematic illustrating concentration variability as

function of grid size and location in modeling domain relative to observations at a monitoring site location.
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As a caveat, we note that there are contributions to
SGV at finer grid sizes than the 1.3 or 1 km scale for
which we have model results, so the conclusions
reached here are based on examples that probably
underestimate the full variability.

3. Results and discussion

3.1. Multiscale simulation

The following results are based on the CMAQ
(Version 4.2.1) modeling system (for nested model
domains at 36, 12, 4, and 1 km grid sizes that
encompass the Houston, Texas and surrounding
areas. The simulations were performed for 30
August 2000; the dominant large-scale synoptic
pattern was modulated by the land and Galveston
Bay breeze circulation. Consequently, the flow field
over Houston shifted from a predominantly wes-
terly direction early in the day to a reversal and
southeasterly flow in the mid afternoon. The
meteorology and emissions for CMAQ runs were
from the PSU-NCAR Mesoscale Meteorological
model, Version 5 (MM5) and the Sparse Matrix
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Operator Kernal Emission (SMOKE) system, re-
spectively.

Modeling performed at fine scales using 1 km grid
size provides insights into the sub-grid scale
variability for air-quality models run at coarser
scales. We recognize that as grid cell size decreases,
the model ‘‘noise’’ content increases. At any given
point in space and time, modeled values can be
highly variable and predictability is reduced because
of the influence of stochastic processes (Hogrefe et
al., 2000) and errors in the model inputs such as
meteorology and emissions (Sax and Isakov, 2003).
The emissions outputs from SMOKE were pro-
duced using base spatial surrogates set at 1 km grid
resolution. Purposefully interpolating from the
same source inventory, we ensure the relative

sensitivity of the model outputs is not compromised
as a function of grid size.

Fig. 2a illustrates a simulation for each of the grid
resolutions in a common domain for carbon
monoxide (CO) at 0700CDT. The comparisons
are shown for the lowest (sigma) layer, which was
the same for each of the 4 different grid sizes in this
study. Clearly, with each decreasing grid size, finer
scale spatial features become apparent. CO is a
relatively photochemically inert species, so that the
patterns reflect dispersion and transport modeling
of the sources. For CO, the mobile contribution is
dominant. With the exception of invoking some sort
of sub-grid (Karamchandani et al., 2002) treatment,
it is important to recognize that within-grid spatial
detail of source location and strength are not
retained in CMAQ; emissions are dispersed uni-
formly into and throughout the grid cell identified at
the level of source’s plume rise.

Results for photochemically active pollutant
species such as for NOx (NO+NO2) and ozone,
are shown in Figs. 2b and c, respectively. These
simulations clearly show finer scale features becom-
ing more pronounced as grid cell size decreases. The
NOx features are much like that of CO, with the
mobile sources along the major traffic corridor and
at several major industrial sources becoming more
distinct with decreasing grid size. Note that the
ozone simulations differ considerably as grid size
decreases from 12 to 1 km indicating increasingly
depressed levels in the ozone in the presence of high
NO source areas. While NOx is a major precursor of
ozone, ozone is initially titrated by NO in the near-
field. This titration effect is not apparent until the
grid resolution is fine enough to resolve the NOx

source patterns. In this study, we see that at coarse
grid spacings of 4 km and larger, the NOx emissions
sufficiently diluted to a level that the titration effect
was effectively reduced. At 1 km grid cell size, the
spatial pattern of NOx is discernible and can clearly
be identified with its traffic and industrial sources.

The implication of grid size-dependent simulation
is as follows: Hypothetically, if one sampled any
and all pollutants somewhere across any one of the
36 km grid cells, one would obtain one data point of
each of the species. For each such 36 km simulation,
there are correspondingly 9 data points for the
12 km grid size, 81 for the 4 km grid size and 1296
for the 1 km grid size simulations. Typical ambient
monitoring networks for environmental measure-
ments are relatively far less dense than that required
for evaluating the results of fine-scale modeling.
However, it can be clearly seen that sampling at a
single point can best represent the value of the grid
in closest proximity to it, and that this value may
differ greatly from the mean value of the cell of
coarser size, especially if it is located in an area in
which SGV pollutant concentrations features are
characteristically large.

3.2. Implications to model evaluation from fine-scale

modeling results

In the previous section, we illustrated the
presence of inherent within-grid variability for
coarse grid simulations based on the results of finer
scale modeling. We now examine the hypothetical

situation in which information about their SGV
concentration distributions is available for compar-
ing the gridded model outputs with ambient data.
Given such a priori existence of SGV distribution at
any model grid, a single-point measurement can
only be, but one member of that distribution.
Without other information, we cannot even say
whether the measurement represents the most
probable range of values of the distribution. It will
definitely be biased towards the values in nearest
proximity to the site, but such values could be
anywhere in the distribution. If the observed value
falls within the range of the SGV distribution, this
does not necessarily imply that the model estimates
are accurate; other acceptance or rejection criteria
or evaluation diagnostics should be applied (Fine et
al., 2003). However, the potential for model failure
is the situation for which the observed value is
outside some arbitrary evaluation criteria such as
the ratio of the standard deviation to the mean of
the distribution, or coefficient of variation (COV),
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Fig. 2. (a) Results of CO (ppmv) from CMAQ for 30 August 2000 at 0700CDT for Houston, Texas’ model domain. Panels are: top left is

for 36 km; top right is for 12 km, bottom left is for 4 km and bottom right is for 1 km grid size. (b) Results of NOx (ppbv) from CMAQ for

30 August 2000 at 1500CDT for Houston, Texas’ model domain. Panels are: top left is for 36 km, top right is for 12 km, bottom left is for

4 km and bottom right is for 1 km grid size. (c) Results of ozone (ppbv) from CMAQ for 30 August 2000 at 1500CDT for Houston, Texas’

model domain. Panels are: top left is for 36 km; top right is for 12 km, bottom left is for 4 km and bottom right is for 1 km grid size.
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or within the 95th percentile value of the SGV
distribution. For illustration, we derive COVs for
the 12 and 4 km grids using the results of the 1 km
simulations. From Fig. 3, we see that the COV for
CO is quite variable, spatially, over the urban area,
values as large as 0.6 are seen.

It is of interest to understand the characteristics
of the distribution of the SGV. For convenience, we
utilize results based on a study (Herwehe et al.,
2004) that focused on the descriptive characteristics
of sub-grid features. The dataset for that case study
utilized a set of CMAQ simulations run at 36 km
and nested to 12, 4 and 1.33 km grid sizes for a
Philadelphia domain for 14 July 1995. Herwehe et
al. derived measures of SGV for the 12 km grids
using the results of the fine scale modeling at
1.33 km. Histograms for a subset of the 12 km grids
in the Philadelphia area of the modeling domain are
shown in Fig. 4. We have arbitrarily chosen the
example of acetaldehyde (CH3CHO), but we could
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Fig. 3. CO for 30 August 2000 at 0700CDT using CMAQ for Houston, Texas’ modeling domain. Gridded means (ppmv) aggregated from

1km simulations are on left-hand side, ratio of standard deviation-to-aggregate mean shown on right-hand side. Top figures are for 12 km,

the bottom figures are for 4 km.
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have easily focused on any of the other pollutants
simulated by the CMAQ modeling system. Con-
tributions to the ambient acetaldehyde distribution
come from both primary sources as well as from
photochemical processes. For this species (and while
not shown, for all the other pollutants simulated)
the characteristics of modality, shape, and spread
(range) of the distribution in each grid cell varied
both across the modeling domain as well as in time
throughout the day. While the variations in the
distributions give the appearance of randomness, in
certain special instances some order appears (for
example, while not shown, for those grids in which
ozone titration by NO is pronounced, those
distributions show the ozone and NO to be
characteristically negatively and positively skewed,
respectively, as expected).

In order to further describe the SGV distribu-
tions, we employ a specialized statistical analysis
tool called CDFware (Herwehe et al., 2004) that
determines an appropriate distribution at any given
time for each grid cell and estimates the parameters
of this distribution. Perusing the results, we found
that it took a wide range of functions to describe the
gridded SGV across the modeling domain. While no
single type of distribution seems to be able to
describe the SGV for all the grids in the modeling
domain, the initial screening survey showed about
40% of the grid cells were best described by a
Weibull distribution function. This is not surprising,
since the Weibull distribution offers considerable
curve-fitting flexibility. Fig. 4 also shows the
Weibull distribution fit to the histograms for
acetaldehyde. The shape of the Weibull distribution
can vary widely, depending on the values of the
parameters, which govern it. In Fig. 4, the Weibull
distribution’s parameters allowed for distribution
shapes for cells that were severely right-skewed and
for cells in which the shape is more or less
symmetric. While not evident in Fig. 4, it was able
to describe well distributions that were strongly left-
skewed, as for example is characteristic of the
distributions for O3. Assuming that acetaldehyde
can be described by the Weibull distribution, we
next attempted to map the estimates of the shape
and location parameters. Unfortunately, we found
these parameters to be highly variable in both space
and time-of-day across the modeling domain; the
practical implication is that no convenient para-
metric descriptions for the SGV emerged from this
study (Herwehe et al., 2004). Nevertheless, the
magnitude and distribution of the SGV can be
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Fig. 4. Acetaldehyde relative histograms (relative frequency versus mixing ratio) are shown with Weibull probability density function fits

shown as heavy lines. These distributions show the sub-grid variation of surface acetaldehyde for each (12 km)2 grid cell derived from

blocks of 81 1.33 km grid values at 15:00 LST from the CMAQ simulation of the Philadelphia area for 14 July 1995. This figure represents

a 3� 5-grid cell subset of the 10� 10-cell-domain; the center cell (I05, J05) is for central Philadelphia. Plot axes use automatic ranging to

clarify sub-grid distribution shape.
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quite large for many of the grids in the modeling
domain, thus, either broadening the acceptance level
of models or requiring additional density of
observation sites in monitoring networks.

3.2.1. Contributions to SGV from turbulence-induced

photochemistry

Additional SGV exists, in principle, for the
relatively fine (1–1.33 km) grid size simulations.
These will arise from within grid source contribu-
tions as well as from internal-coupled turbulent and
photochemistry aleatory interactions. For example,
Herwehe (2000) demonstrated that chemical hetero-
geneities will arise from the process of photochemi-
cal reactions that take place as a consequence of
turbulent transport in a polluted atmosphere.
Herwehe’s LESchem modeling system utilized a
large-eddy simulation model of boundary layer
turbulence with online-coupled photochemistry,
allowing studies to be performed for which chemical
reactions occur during mixing motions on turbulent
scales. His studies have shown that transient SGV
arises, even from relatively simple cases. For
example, from Herwehe (2000) as seen in Fig. 5,
turbulent motions will transform the properties
of a volume of air for an idealized case of steady
and uniform surface source (flux) of precursor
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Fig. 5. Top left. Isoprene mixing ratio cross sections are shown from an idealized midday convection simulation (no mean wind) from

LESchem model. Bottom left. A vertical slice of isoprene located at y ¼ 5800m is shown in (a) and a horizontal isoprene slice from the

middle of the convective boundary layer (CBL) at z ¼ 1000m. Note the complex turbulence-induced structure of the isoprene field despite

horizontally homogeneous isoprene surface emissions. Right. Vertical profiles of mixing ratio statistics are shown for selected trace gases

from the LESchem simulation. Shown for each grid level are minimum and maximum values (whisker end points), 10th and 90th

percentiles (red brackets), 1st and 3rd quartiles (cyan boxes), the median (dashed blue line), and the mean (solid black line).
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(isoprene). Stochastic descriptions of variability
were produced even for local aleatory states due
to turbulence; sampling from this volume yielded a
unique set of vertical profiles of concentration
fluctuation distributions for each of the various
pollutants throughout the mixed layer.

Further results of studies conducted using
LESchem with a variety of line and area source
configurations showed considerably increased com-
plexity in detail from that in Fig. 5. This verified our
anticipation that in the urban atmosphere (where
chemical mixtures, the source configurations and
the turbulent mixing properties are complicated) the
complexity of the SGV distributions across the
modeling domain is exacerbated.
3.3. Comparison of coarse grid results versus

aggregation of fine-scale model results

The results of nested fine-scale modeling using
results from the CMAQ-nested simulations for the
Houston case study described above provide an
opportunity to investigate the differences between
coarse grid simulations and those aggregated using
finer grid simulations. These differences thus repre-
sent the extent to which the coarse scale simulations
are limited by ignoring processes and details at its
sub-grid scale (represented by the fine grid results).
In the context of model evaluation, these differences
should ideally be small to justify ignoring the fine
scale concentration features that are unresolved at
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Fig. 6. Comparison of ozone at 12 km grid spacing at 1500 CDT modeled using CMAQ for Houston, Texas model domain for 30 August

2000: top left, ozone aggregated from 1km grid simulations, bottom left, ozone at native 12 km spacing and at right, the difference between

the aggregation mean and the native 12 km simulations.
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coarse scale. Large differences are evident in some
grid cells over several different areas at 12 km grid
sizes between the aggregation from 1.33 km to
the native 12 km simulations in the case of ozone
(Fig. 6). While not shown, the general pattern and
magnitude of the difference fields are similar for
NOx, while considerably reduced for the CO
simulations. Both positive and negative differences
are observed indicating the non-linear outcomes
from modeling the processes at different scales
between 12 and 1.33 km. Results from this type of
analyses suggest the need for improved epistemol-
ogy of the underlying assumptions of the model
parameterizations to the resulting CMAQ outcomes
based on grid size.

4. Summary

The underlying principle of this paper is that the
fundamental property of air quality models be
employed for the purpose of qualifying the appraisal
or evaluation of model performance. Simply stated,
‘‘When comparing model results against observa-
tions, it is an important consideration to examine
the degree to which the data falls inside or outside
of the SGV distribution for the grid.’’ One cannot
simply reject a model if the observations fall within
some criterion based on the distribution of the SGV
of that grid, even if the difference is large. We then
investigated the nature of, the contributions to, and
the distributional characteristics of SGV, approach-
ing this subject with illustrations using results of fine
scale air quality and coupled LES and chemistry
modeling.

This model evaluation paradigm is an extension
of the neighborhood-scale model conceptual frame-
work (Ching et al., 2004a) requiring each grid to
have its own signature SGV distribution function.
The example results of SGV distributions for
different pollutants in urban areas indicate that
the shape and characteristics of the SGV distribu-
tions varied considerably both across the modeling
domain, by species and (while not shown) by
averaging times. We have employed a newly
developed technique to derive PDFs of the SGV
distribution for each grid in the modeling domain.
Our initial explorations have indicated that these
stochastic distribution functions exhibit cell-to-cell
variations on the hourly predictions that reflect both
their source distribution characteristics and the
photochemistry of the chemical mixtures within
cells. For practical considerations and applications
where fine scale modeling is unfeasible, it is
desirable to obtain stable parameterizations of these
SGV PDFs. Further studies will be needed to obtain
systematic and generalized stochastic distribution
functions for the pollutant SGV distributions as a
function of grid size. They will need to be
appropriately tailored to the averaging time needed
for the specific application. For operational im-
plementations, even PDFs, crudely based on source
distribution and dispersion potential might at least
provide upper and lower bounds useful as a measure
for model evaluation and modeling in general.
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However, we know that the SGV determined
from the 1.33 and 1 km simulations are under-
estimated. Investigations are now underway to
investigate the additional variability directly from
(1) within-grid pollutant source distributions and
from (2) those derivable from turbulence-induced
photochemistry. For the latter, we foresee such
parameterizations to be stochastic and dependent
on a number of properties of the pollutant mixture,
including (a) the composition of the mixture, (b) the
Damköhler number, i.e., the ratio of the time scales
of the chemical reactivity to the eddy diffusivity,
and (c) the intensity of segregation parameter which
is the ratio of the concentration covariance to the
product of mean concentrations for two reactants
(Herwehe, 2000). They will be needed to apply over
a wide variety of atmospheric conditions and for
modeling periods ranging from hourly to multi-day
simulations. In addition, we have used a ‘‘tradi-
tional’’ one-hour time step for coupling the meteor-
ology with the chemistry model. We have performed
sensitivity studies that show some (albeit limited)
degree of suppression of variability in the resulting
modeled concentration fields. Thus, with finer time
steps used to couple meteorology and chemistry, the
SGV bandwidth would increase somewhat, as
pointed out earlier by Grell et al. (2004), however,
it does not alter the general conceptual paradigm for
utilization in model evaluation.

As another result of this study, we have observed
differences between the outputs of model runs at
coarse grid sizes from those aggregated to the
corresponding grid cell sizes from the finer grid
simulations. These differences arise primarily be-
cause coarse grid models typically do not model
atmospheric processes and dispersion at their sub-
grid scales. In the context of model evaluation, it is
desirable that these differences be known and
characterized, and ideally, minimized.

The conclusions are of a conceptual nature based
on fine scale modeling results. It is appreciated that
for modeling performed at finer scales, it is
important to minimize risk of poor model fidelity;
thus, the model physics and input data requirements
must be adequately commensurate with the scale. In
this regard, it is appreciated that the outcomes of
fine scale modeling also need to be evaluated; field
experiments using mobile sampling platforms and/
or saturation-sampling protocols would be highly
desirable. These impressions and conclusions pre-
sented in this paper were drawn from a one-day case
study period. Results and findings of other model-
ing studies (e.g., Sax and Isakov, 2003) are
qualitatively consistent with the results and conclu-
sions of this study.
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